Project Name: Soils of the Lower Macquarie Valley, New South Wales

Project Code: Macquarie Site ID: 255 Observation ID: 1

Agency Name: CSIRO Division of Soils (ACT)

Site Information

Desc. By: N.J. McKenzie Locality:

Date Desc.: Elevation: 15/06/85 No Data Map Ref.: Sheet No.: 8534 1:10000 Rainfall: No Data Northing/Long.: 6461150 AMG zone: 55 Runoff: Moderately rapid 598675 Datum: AGD66 Easting/Lat.: Drainage: Well drained

<u>Geology</u>

ExposureType: Soil pit Conf. Sub. is Parent. Mat.: No Data

Geol. Ref.: No Data Substrate Material: No Data

Land Form

Rel/Slope Class:No DataPattern Type:No DataMorph. Type:Mid-slopeRelief:No DataElem. Type:No DataSlope Category:No DataSlope:%Aspect:No Data

<u>Surface Soil Condition (dry):</u> Firm <u>Erosion:</u> Stable, Minor or present (wind);

Soil Classification

Australian Soil Classification: Mapping Unit: GIN GIN

N/A AEOLIAN DEPOSITS

Principal Profile Form: Gn3.13

ASC Confidence: Great Soil Group: N/A

Confidence level not specified

Site Disturbance: Cultivation. Rainfed

Vegetation:

Tall Strata - Tussock grass, , . *Species includes - None Recorded

Surface Coarse Fragments:

Profile Morphology

A1 0 - 0.18 m Yellowish red (5YR3/5-Moist); ; Sandy clay loam; Weak grade of structure, 50-100 mm,

Subangular blocky; Rough-ped fabric; Few (<1 per 100mm2) Very fine (0.075-1mm) macropores, Few (<1 per 100mm2) Fine (1-2mm) macropores, Moderately moist; Weak consistence; Field pH 6.5 (Raupach); Common, very fine (0-1mm) roots; Common, fine (1-2mm)

roots; Gradual, Smooth change to -

B21 0.18 - 0.6 m Dark red (2.5YR3/5-Moist); ; Sandy clay; Moderate grade of structure, 20-50 mm, Angular

blocky; Smooth-ped fabric; Many (>5 per 100mm2) Very fine (0.075-1mm) macropores, Many

(>5 per 100mm2) Fine (1-2mm) macropores, Few (<1 per 0.01m2) Medium (2-5mm) macropores, Moderately moist; Firm consistence; Common cutans, 10-50% of ped faces or walls coated; Field pH 7.5 (Raupach); Common, very fine (0-1mm) roots; Common, fine (1-2mm)

roots; Diffuse, Smooth change to -

B22 0.6 - 1.4 m Dark reddish brown (2.5YR3/4-Moist); ; Medium clay; Strong grade of structure, 10-20 mm,

Angular blocky; Smooth-ped fabric; Common (1-5 per 100mm2) Very fine (0.075-1mm) macropores, Dry; Firm consistence; Many cutans, >50% of ped faces or walls coated; Field pH

8.5 (Raupach); Few, very fine (0-1mm) roots;

Morphological Notes

Observation Notes

Mitchell Soil Profile Class, Moderately Drained Phase, Wheat sown this week.

Site Notes

Project Name: Project Code: Agency Name: Soils of the Lower Macquarie Valley, New South Wales Macquarie Site ID: 255 Observation CSIRO Division of Soils (ACT) Observation ID: 1

Laboratory Test Results:

Edbordtory Test Nessures.										
рН	1:5 EC					•	e CEC	E	CEC	ESP
	dS/m		9							%
7.1A	0.039A	6.5E	8.0	1.2	0.1			8	3.6D	
8.6A 8.9A	0.035A 0.056A	7.1E	3.6	0.8	0.3			1	1.8D	
CaCO3	-	Avail. P	Total P	Total N	Total K			article \$		alysis Silt Clay
%	%	mg/kg	%	%	%	Mg/m3			%	•
						1.52 1.64 1.89 1.56		25.5A 21.9A		11.9 23.7 8.4 43.5
COLE	COLE Gravimetric/Volumetric Water Conf					tents		K sat	: к	unsat
	Sat.	0.05 Bar	0.1 Bar g/g	0.5 Bar g - m3/m3	1 Bar	5 Bar	15 Bar	mm/h	ı ı	mm/h
0.027/ 0.002/	4 4		0.13G 0.12G 0.16G 0.19G			(0.07D 0.13D			
	7.1A 7.2A 8.6A 8.9A CaCO3 % COLE 0.023, 0.027, 0.002,	pH 1:5 EC dS/m 7.1A 0.039A 7.2A 0.087A 8.6A 0.035A 8.9A 0.056A CaCO3 Organic C % %	PH 1:5 EC Excl dS/m 7.1A 0.039A 6.5E 7.2A 0.087A 8.6A 0.035A 7.1E 8.9A 0.056A CaCO3 Organic Avail. C P mg/kg COLE Sat. 0.05 Bar 0.023A 0.027A 0.002A	pH 1:5 EC dS/m Exchangeable Mg Ca Mg dS/m Ca Mg 7.1A 0.039A 6.5E 0.8 7.2A 0.087A 7.1E 3.6 8.9A 0.056A 7.1E 3.6 CaCO3 Organic C P P P mg/kg N 6 % % % COLE Sat. 0.05 Bar 0.1 Bar g/s 0.1 Bar g/s 0.023A 0.027A 0.12G 0.002A 0.12G 0.16G	PH	pH 1:5 EC Exchangeable Cations Na Na Cmol (+ Na) 7.1A 0.039A 6.5E 0.8 1.2 0.1 7.2A 0.087A 7.1E 3.6 0.8 0.3 8.9A 0.056A Avail. Total Total Total Total CaCO3 Organic Organic Organic Programmer Pr	PH	PH	PH	PH

Soils of the Lower Macquarie Valley, New South Wales **Project Name:**

Project Code: Macquarie Site ID: 255 Observation ID: 1

Agency Name: **CSIRO** Division of Soils (ACT)

Laboratory Analyses Completed for this profile

15C1_CA Exchangeable bases (Ca2+,Mg2+,Na+,K+) - alcoholic 1M ammonium chloride at pH 8.5, pretreatment

for soluble salts

15C1_K Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15C1 MG Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15C1_NA Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15J_BASES Sum of Bases

EC of 1:5 soil/water extract 3A1 4A1 pH of 1:5 soil/water suspension

Clay (%) - Coventry and Fett pipette method

P10_CF_C P10_CF_CS P10_CF_FS Coarse sand (%) - Coventry and Fett pipette method Fine sand (%) - Coventry and Fett pipette method P10_CF_Z Silt (%) - Coventry and Fett pipette method

P3A1 Bulk density - g/cm3

P3B1GV_15 15 BAR Moisture g/g - Gravimetric of ground sample (<2mm) using pressure plate

P3B4GV_01 0.1 BAR Moisture g/g - Gravimetric of soil clods (Soil Survey Staff, 1967)

P5_COLE Coefficient of Linear Extensibility (Grossman et al. 1968)